

Árpád Somogyi

Associate Director CCIC, Mass Spectrometry and Proteomics Laboratory

> OSU August 17, 2015

Time	Monday, 8/17	Tuesday, 8/18
9-10:20am	Introduction to Mass Spectrometry Ionization methods (Arpad)	Mass Analyzers (Arpad) FT-ICR instrumentation and techniques (Mike Freitas)
10:35- 12:00pm	GC-MS analysis, examples and EI spectra interpretation (Jeremy)	Ion Activation (Vicki Wysocki)
12-1pm	Lunch Break	Lunch Break
1-2:30pm	Lab visit (Group 1)	Lab visit (Group 2)
2:40-4pm	HPLC-MS/MS and metabolomics, Data processing programs (Yu Cao)	Small molecule (ESI) spectrum interpretation (Arpad) Open Discussion/Users Presentations

What can we provide by mass spec?

- MW determination
 - nominal
 - accurate (elemental composition)
 - isotope pattern
 - · high resolution
- Fragmentation
 - fragmentation rules
 - libraries ("fitting")
 - MS/MS (or MSⁿ)

Thermodynamic parameters

- ionization energy (IE)
- appearance energy (AE)
- heats of formation (ΔH_f)
- activation enthalpy ($\Delta H^{\#}$), activation entropy ($\Delta S^{\#}$).

TABLE 1.2 Advantages and Disadvantages of Electron Ionization			
Advantages	Disadvantages		
Subpicomole to picomole sensitivity. Availability of vast computer databases, containing over 100,000 compounds.	Limited mass range due to therma desorption (volatility) requirement. Possible decomposition by thermal		
Use of fragmentation pattern as a	desorption prior to vaporization.		
identify unknowns.	resulting in no observable		
Structural information obtained	molecular ion.		

18

Protonation is one type of ionization $M + AH+ \rightarrow MH+ + A$ $CH3CH2NH2 + (NH3)nNH4+ \rightarrow CH3CH2NH3+ + (n-1) NH3$ The extent of fragmentation depends on the *exothermicity* of the reaction *Proton affinity* (PA): $M + H^+ \rightarrow MH^+ - \Delta H_r = PA$

Sources still being developed DESI- desorption ESI (sample not in solution)

MALDI Mat	trice	es	
Matrix	Abbrev	Sample Type	
2,5-dihydroxybenzoic acid	DHB	Peptides < 5,000 polymers, dedrimers Good universal matrix "cold matrix"	50% ACN in 0.1% TFA, THF, 2:1 chloroform:MeOH
3,5-dimethoxy-4-hydroxycinnamic acid (Sinapinic acid)	SA	Peptides and Proteins > 10,000 "hot matrix"	50-70% ACN in 0.1% TFA
α -cyano-4-hydroxycinnamic acid	HCCA	Excellent for peptides, digestion products and proteins	50% ACN in 0.1% TFA
Dithranol		Non-polar polymers	THF, Methylene chloride
Indoleacrylic acid	IAA	Non-polar polymers	THF, methylene chloride
3-hydroxypicolinic acid	HPA	DNA and negative ion samples	See me for more specific procedure
Trihydroxyacetophenone	THAP	DNA and negative ion samples	See me for more specific procedure
Nor-harmane		Universal	50% ACN, THF, chloroform

					Pres	ent study					
	Reference	Appa col	arent fre lision e frai	ee ener nergy (me)	gy at Iab				Burton		Nelsor
Matrix compound	bases used	2 eV	5 eV	7 eV	10 eV	Proton affinity ^a	Average T _{eff} in K	Jorgensen et al. [31]	et al. [32]	Steenvoorden et al. [34]	et al. [33]
4HCCA	1-4	201.5	201.0	200.9	200.6	201.0 ± 0.27 (±0.64)	817	201.0	183.0	223.0	203.0
GA	2-6	204.7	204.3	204.3	204.3	$204.4 \pm 0.17 (\pm 0.36)$	528	-	204.0	204.0	202.9
MSA	3-5,8	205.3	205.2	205.2	205.1	205.2 ± 0.52 (±1.22)	399	-	-	-	-
SA	7,9-11	209.3	209.2	209.2	209.2	209.2 ± 0.38 (±0.89)	427	212.0	204.0	214.0	210.0
DT	10,12-14	211.5	211.4	211.6	211.6	211.5 ± 0.77 (±1.81)	507	-	209.0	-	-
AMT	10-12,14	213.1	213.0	212.9	213.0	213.0 ± 0.31 (±0.73)	515	-	-	-	-
THAP	10-12,14	213.5	213.4	213.2	213.0	213.3 ± 0.65 (±1.53)	576	-	-	-	210.8
IAA	10-12,14	214.0	213.6	213.3	212.9	213.5 ± 0.26 (±0.61)	772	-	215.0	-	-
HPA	9-11,14	214.9	214.7	214.5	214.2	214.6 ± 0.33 (±0.78)	714	214.0	-	-	214.5
MBT	10-12,14	214.9	214.9	214.9	214.9	214.9 ± 0.23 (±0.54)	655	-	-	-	-
AAMT	10-12,14	215.5	215.7	215.8	215.8	215.7 ± 0.14 (±0.33)	619	-	-	-	-
EMT	15-19	218.1	218.0	217.9	217.9	218.0 ± 0.17 (±0.36)	432	-	-	-	-
MP	15-19	219.6	219.5	219.5	219.5	219.5 ± 0.19 (±0.41)	402	-	-	-	-
HABA	18-21	227.3	226.9	226.7	226.6	226.9 ± 0.26 (±0.61)	556	225.0	183.0	-	-
NH	22-25	233.1	233.1	233.0	232.8	233.0 ± 0.44 (±1.03)	395	-	-	-	-

MS is an absolute method for MW determination
(but remember possible degradation!)

Tuble 1. Molecular weight data for polystyrene standards	Table 1.	Molecular weight data for polystyrene standards
--	----------	---

	Molecular weight and polydispersity		
Polymer standard	By classical methods ^a	By MALD ^b	
Polystyrene 5050	$M_n = 4755$ (GPC) $M_w = 4992$ (GPC) $M_n = 4720$ (VPO) $M_v = 4950$ (IV) PD = 1.05 (GPC)	$M_n = 5189 (0.5\% \text{ RSD})$ $M_w = 5329 (0.5\% \text{ RSD})$ $\text{PD} = 1.027 \pm 0.001$	
Polystyrene 7000	$M_n = 6770$ (GPC) $M_w = 6962$ (GPC) $M_w = 7170$ (LLS) $M_v = 6943$ (IV) PD = 1.03 (GPC)	$\begin{split} M_n &= 6998 \; (0.4\% \; \text{RSD}) \\ M_w &= 7132 \; (0.4\% \; \text{RSD}) \\ \text{PD} &= 1.019 \; \pm \; 0.001 \end{split}$	
Polystyrene 11,600	$M_n = 11,356$ (GPC) $M_w = 11,687$ (GPC) $M_w = 11,000$ (LLS) $M_v = 10,720$ (IV) PD = 1.03 (GPC)	$M_n =$ 11,074 (0.3% RSD) $M_w =$ 11,187 (0.3% RSD PD = 1.010 ± 0.001	

