MS/MS of Peptides
Manual Sequencing of Protonated Peptides

Árpád Somogyi
Associate Director
CCIC, Mass Spectrometry and Proteomics Laboratory

OSU
July 12, 2016

Peptides – Product Ion Scan

• Product ion spectra contain many types of fragment ions
 • charge directed
 • charge remote
 • “a”, “b”, “y” type sequencing ions
 • internal fragments, immonium ions

• Important for sequencing
 • amino acid determined from Δ mass between peaks in spectrum
 • “y” ions series
 • “b” ions series
 • immonium ions (identify amino acids in the peptide)
 • “a” ions (confirm “b” ion after a loss of CO, 28 amu)

• Presented here:
 • peptide fragment ions
 • a mechanism for fragment ion formation
 • a peptide to sequence
A mechanism of peptide fragmentation

(1) Δ positive charge

(2) Nucleophilic attack

(3) cyclic intermediate

Ref: Wysocki, 2000

A mechanism of peptide fragmentation

(4) Rearrangement

b oxazolone ion neutral

Ref: Wysocki, 2000
A mechanism of peptide fragmentation

(4) Rearrangement

oxazolone neutral (or other structure)

y ion

Ref: Wysocki, 2000

Acidic group of Asp (D) can cause cleavage

Ref: Wysocki, 2000
Peptides fragment in a predictable way

If doubly charged parent:
possible b/y ion pair
or doubly charged b or y
fragment ions

Peptides fragment in a predictable way
resulting in a series of peptide fragment ions
- b/y ion series commonly used for sequencing common with CID
- **Alternative** activation methods (ETD, ECD) generate c/z ion series
 - Can also be used to sequence peptides

\[
[M + 3H]^3^+ + A^- \rightarrow [M + 3H]^{2^+} + A
\]

\[
[M + 3H]^{2^+} \rightarrow [C+2H]^{1^+} + [Z+H]^{1^+}
\]

1

c/z Ion formation mechanism

c/z Ion formation mechanism

\[\Delta \text{ between ion series} = \text{Residue mass} \]

\[\begin{align*}
\text{Peptide bond fragment ions} \\
\text{b}_1 & \quad y_3 \quad \text{m/z} 190 \\
\text{b}_2 & \quad y_2 \quad \text{m/z} 133 \\
\text{b}_3 & \quad y_1 \quad \text{m/z} 76
\end{align*} \]

Residue Mass
specific to amino acid
present in sequence
Peptide Sequencing

<table>
<thead>
<tr>
<th>Residue</th>
<th>3-letter code</th>
<th>1-letter code</th>
<th>Immonium ion*</th>
<th>Related ion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
<td>71 u.</td>
<td>71.1</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
<td>115 u.</td>
<td>156.2</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
<td>114.1</td>
<td></td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>Asp</td>
<td>D</td>
<td>115.1</td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
<td>103.2</td>
<td></td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>Glu</td>
<td>E</td>
<td>129.1</td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
<td>Q</td>
<td>128.1</td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
<td>57.1</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
<td>137.1</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
<td>113.2</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
<td>113.2</td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
<td>128.2</td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
<td>131.2</td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
<td>147.2</td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
<td>97.1</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
<td>87.1</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
<td>101.1</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
<td>W</td>
<td>186.1</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
<td>163.2</td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
<td>99.1</td>
<td></td>
</tr>
</tbody>
</table>

Immonium and related ion masses after Falk, 1992 #690 and Papayiannopoulo, 1995 #681.Bold face indicates strong signals, italic indicates weak.

http://www.matrixscience.com/help/fragmentation_help.html
LEARNING CHECK

Tryptic Peptide Sequencing Exercise performed in a low res ion trap MS/MS

Ion Chromatogram
Peak chosen at 26.47 min

Mass at 571.36 chosen for MS/MS

Ion Current over 60 min

MS/MS
Peptide precursor ions observed by MS

MH\(^+\) m/z = 1141.3

\[[M+H]^+ \times \text{m/z measured} \]
\[1142.4 \] [M+2H]
\[1141.4 \] [M+H]

HOW?

MS/MS of 571.2

This spectrum will tell us peptide sequence eventually HOW?
An MS/MS spectrum of the m/z = 571.4 peptide. We will sequence this together.
y series ions

87 = Serine
156 = Arginine
243
19 = mass of H + OH + H
262
Sequencing a Peptide

Peptide Mass MH+(monoisotopic): 1025.5374
Sequence: TELAAEVHR

Computer programs search databases that contain information and sequence of proteins

<table>
<thead>
<tr>
<th>Measured peptide</th>
<th>Mass</th>
<th>GI</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>278.39</td>
<td>MK</td>
<td>126509</td>
<td>Alkanal monooxygenase alpha chain</td>
</tr>
<tr>
<td>2343.72</td>
<td>FGNFLTYQPPELSQTVMK</td>
<td>P07740</td>
<td>Bacterial luciferase alpha chain</td>
</tr>
<tr>
<td>175.21</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>643.80</td>
<td>LVNLGK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5887.73</td>
<td>ASEGCGFDTVWLEHHFTEFGLLGNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1491.67</td>
<td>QAEDVNLLDQMSK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232.26</td>
<td>GR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>322.38</td>
<td>FR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This works because the fragments are predictable

MS-Product Search Results

Parameters

<table>
<thead>
<tr>
<th>mass</th>
<th>intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>218.9</td>
<td>154041</td>
</tr>
<tr>
<td>219.0</td>
<td>188821</td>
</tr>
<tr>
<td>248.9</td>
<td>617130</td>
</tr>
<tr>
<td>376.2</td>
<td>262276</td>
</tr>
<tr>
<td>377.1</td>
<td>132554</td>
</tr>
<tr>
<td>387.0</td>
<td>121560</td>
</tr>
<tr>
<td>439.2</td>
<td>307984</td>
</tr>
<tr>
<td>439.3</td>
<td>78477</td>
</tr>
<tr>
<td>491.1</td>
<td>214504</td>
</tr>
<tr>
<td>503.3</td>
<td>111570</td>
</tr>
<tr>
<td>512.7</td>
<td>268518</td>
</tr>
<tr>
<td>512.8</td>
<td>347071</td>
</tr>
<tr>
<td>520.0</td>
<td>209338</td>
</tr>
<tr>
<td>521.5</td>
<td>133052</td>
</tr>
<tr>
<td>521.9</td>
<td>308869</td>
</tr>
<tr>
<td>522.2</td>
<td>70666</td>
</tr>
<tr>
<td>562.2</td>
<td>101171</td>
</tr>
<tr>
<td>562.5</td>
<td>114861</td>
</tr>
<tr>
<td>622.2</td>
<td>521627</td>
</tr>
<tr>
<td>623.2</td>
<td>80720</td>
</tr>
<tr>
<td>633.3</td>
<td>179525</td>
</tr>
<tr>
<td>737.2</td>
<td>494965</td>
</tr>
<tr>
<td>738.2</td>
<td>106430</td>
</tr>
<tr>
<td>738.3</td>
<td>202034</td>
</tr>
<tr>
<td>766.2</td>
<td>88816</td>
</tr>
<tr>
<td>838.2</td>
<td>201007</td>
</tr>
<tr>
<td>877.2</td>
<td>262518</td>
</tr>
<tr>
<td>878.2</td>
<td>7391</td>
</tr>
<tr>
<td>896.2</td>
<td>2305621</td>
</tr>
<tr>
<td>896.2</td>
<td>480302</td>
</tr>
<tr>
<td>896.3</td>
<td>1027102</td>
</tr>
<tr>
<td>897.3</td>
<td>260690</td>
</tr>
</tbody>
</table>

Protein Prospector: http://prospector.ucsf.edu/

More peptides identified increases confidence in ID

If all of these peptides belonged to an unknown protein, MS/MS could potentially reveal protein identity
Sequence more peptides

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFGTDMDNSR</td>
<td>Demonstration Sequence</td>
</tr>
<tr>
<td>IFDDSDQTK</td>
<td>Spectra 1</td>
</tr>
<tr>
<td>VYLEEFVR</td>
<td>Spectra 2</td>
</tr>
<tr>
<td>ESYSNTFEQK</td>
<td>Spectra 3</td>
</tr>
<tr>
<td>IFDDSDQTK</td>
<td>Spectra 4</td>
</tr>
<tr>
<td>GLYDKDFR</td>
<td>Spectra 5</td>
</tr>
</tbody>
</table>

Note that Peptide 1 & 4 are the same

1 = doubly charged precursor
4 = singly charged precursor